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In the present paper the dynamic properties of nonisothermal-nonadiabat ic  calorim- 
eters have been analysed. In these calorimeters the thermal  effect produced is partly 
accumulated in the calorimetric vessel, and part ly t ransmit ted to the shield with constant  
temperature. The generalized equation of the heat balance and the equat ion of the 
dynamics have been given for this type of calorimeter. The dependence between the 
course of the thermal effect Q in t ime t as a function of the temperature changes O of 
the calorimeter has been presented. Dependences Q(t)= f[tO(t)] for a calorimeter 
with different domain configurations distinguished in it, and with different mutual 
locations of heat sources and temperature sensor have been given. Practical application 
of the considerations presented has been given. 

In the past few years a considerable development of  the theory of  calorimetric 
systems has taken place. It is the aim of this theory to determine methods of anal- 
ysis of  thermal effects in calorimetric systems; recognize their static-dynamic 
properties; and describe ways for accurate determination of  thermal effects, and 
above all, of  the thermokinetics of the examined processes, i.e. the funtion W(t)  

dQ(t) 
W(t)  - - -  

dt  

where Q is the amount of heat developed in a calorimetric system and t is time. 
The ability to determine this function accurately considerably enlarges the range 
of application of  calorimetry to the determination of the thermokinetics of the 
processes examined. 

Theoretical models of  nonisothermal-nonadiabat ic  (n-n) calorimeters are 
discussed in this paper. It can be assumed [1 ] that, in general, every n-n calorim- 
eter consists of a calorimetric vessel which is surrounded by a medium bounded 
by a constant-temperature shield. The thermal effect produced in the calorimetric 
vessel is partly transferred to the constant-temperature shield and partly accumu- 
lated in the vessel. 

If  the calorimeter is regarded as a uniform, isotropic body of homogeneous 
temperature O, which changes only with time t, and if its coefficients G and K 
are independent of  the range of temperature and time (G is the coefficient of  heat 
losses; Kis the heat capacity of the system), then the dependence between W(t)  
and O(t) can be expressed by the heat balance equation (1) for a single body 

K dO(t) d Q(t) 
~ - -  + GO(t)  - a t  (1) 
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The first term of the left-hand of Eq. (1) describes the quantity of heat accumu- 
lated throughout the time interval dt in the calorimetric vessel, while the second 
term describes the amount of heat exchanged between the calorimetric vessel and 
the surroundings. The right-hand term of the equation describes the amount of 
heat dQ(t) released throughout the time interval dt. For a particular case, when 
a thermally passive substance is placed in the calorimeter, Eq. (1) becomes 

dO(t) 

dt 
- (a/K) o( t )  (2) 

which is equivalent to the equation of Newton's law of cooling 
g 

dO(t) 
dt - fi O(t) (3) 

provided that K, G. and fl are interrelated as follows 

G = Kfl .  (4) 

Thus, a calorimeter can be described in terms of the differential equation (1) 
and Newton's law of cooling can be used for the determination of the calorimetric 
system parameters. 

Let us now analyse the dynamic properties of the model in terms of calorimetric 
terminology and also notions taken from the steering and automatic control theory. 
The dynamic properties of the calorimeter are somehow encoded in the form 
of the equation representing the formalization of the model. Equation (1) is an 
ordinary first-order linear differential equation. The principle of superposition 
is applicable to such equations. This principle can be formulated as follows: the 
temperature response O(t) of a linear system to several thermal forcing functions 
Qa(t), Q2(t) and Q3(t) is equal to the sum of the responses to all the individual 
thermal forcings. This property of the system creates a possibility for a relatively 
simple means of analysis of complex thermal effects, provided that at least some 
of the single thermal effects are known and likely to be described in another way. 

Another property of the system is also of interest. Namely, it follows from the 
steering and automatic control theory that a physical system described by this 
type of equation is characterized by first-order inertial properties, which is a fact 
easy to recognize, because upon dividing both sides of Eq. (1) by G and putting 

K 1 1 d Q(t) 1 
T -  G - fl ' f ( t ) -  G d T - -  G W(t)  

we arrive at the following equation 

d o ( 0  
T - -  + O(t) = f ( t )  (5) 

dt  
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which indicates that a knowledge of O(t) and the time constant T suffices to estab- 
lish the course of thermal effectf(t). 

The time constant T is the parameter decisive for the inertial properties of the 
system. This also means that the values of  the time constant determine whether 
the experimental conditions approach more closely either the isothermal or the 
adiabatic type, and the resulting observed temperature course follows more or 
less closely the course of the functionf(t),  which corresponds to the thermokinetics 
of the transformation investigated. Simply, the values of  T control the inertial 
or damping properties of the system. Equally simple in this method is the procedure 
for the determination of W(t), because it is not difficult to get information on 
numerical values of  G and K [1, 2]. 

The common application of this model in n-n calorimetry is generally familiar. 
Most corrections applied to an ordinary calorimeter, for example the Regnault- 
Pfaundler correction [3], are based on this method. It underlies the static-dynamic 
method od Swi~toslawski and Salcewicz [4, 5]. This model has also been used 
for evaluation of long-duration thermal effects in Calvet microcalorimeters [6], 
LKB calorimeters, and other calorimeters. However, this model is rather poor. 
When thermal inertia takes place, or when temperature gradients occur between 
particular elements of the calorimetric system and in the elements themselves, 
this dynamic model does not always show clearly enough the real properties of 
calorimetric systems. It does not fully explain the influences of external disturb- 
ances on the investigated calorimetric system, either. Numerous experimental facts 
are by no means explicable in terms of the one-body model. By way of illustra- 
tion, these include the heat capacities tl 0 and #~j discovered by Calvet [5] and the 
relation of the heat capacity to the time of generation of a constant-power Joule's 
effect established by Madejski, Utzig and Zielenkiewicz [71. The dependence 
between W(t) and O(t) given by the one-body model does not precisely describe 
the thermokinetics of short-duration or quickly-changeable thermal processes in 
the n-n calorimetric systems. 

These facts resulted in research for other models of calorimetric systems. Nu- 
merous authors have employed the "black box" notion, known in the steering 
and automatic theory, to develop a number of methods for determining unknown 
W(t) fl'om the measured transmittance of  the calorimetric systems and the ob- 
served course oftemperaturechanges O(t). It is assumed at the same time that a 
calorimeter constitutes a dynamic linear system with lumped parameters, which 
is described by means of  an ordinary differential equation of the n-th-order. 
The input function of such a dynamic system is the termal power developed in 
the calorimeter, whereas the output function is the course of the temperature 
changes. If the thermal effect, usually constant in time, developed in the process 
of testing a calorimeter is known and the temperature changes caused by this 
effect measured, the transfer function of the calorimetric system is determined 
by different means. For determination of the thermokinetics Navarro, Rojas 
and Torra [8, 9] use the method of harmonic analysis through determination of 
the transfer function on the basis of spectrum transmittance. In the dynamic 
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optimization method Gutenbaum, Utzig, Wi~niewski and Zielenkiewicz [10, 11] 
base the transformation equation on application of convolution and then the 
method of the conjugate gradient. Brie, Petit and Gravelle [12] determine the 
thermokinetics by the methods of state variables. It is assumed in all these works 
that the transmittance of the calorimetric system is invariable. 

A separate group of works considers the calorimetric models based on dis- 
tributed parameters of the calorimetric system. The technique applied in these 
papers resolves itself to solving the Kirchhoff-Fourier partial equation. Laville 
[13] formulated the fundamentals of the theory of the Calvet microcalorimeter 
on this basis. Calvet and Camia [14] and Camia [15, 16] presented principles of 
the method of determining short-duration thermal effects in calorimeters of this 
type. Oleinik [17] carried out analysis of thermal effects in a calorimetric bomb. 
Hattori, Amaya and Tanaka [18] assumed an idealized, one-dimensional model 
of a calorimeter and proved that in a particular case the total thermal effect 
developed in a conductive calorimeter is proportional to the area between the 
course of the temperature changes and the time axis. There are few works on this 
problem. This may be due to the fact that dynamic models based directly on de- 
tailed solution of the Kirchhoff-Fourier equation have, in general, too compli- 
cated a form to be used at present to solve practical problems. 

Development of methods of determining dynamic properties of calorimetric 
systems is carried out on the basis of simplified models, which allow obtaining of 
the transformation equation in a limited set of parameters and are based on con- 
sideration of the thermal balance equations of the calorimeter, treated as a system 
of several distinguished bodies. This method was used for the first time to deter- 
mine the total thermal effects in a calorimetric bomb by King and Grover [19], 
Jessup [20], and then by Armstrong, West, Churney [21, 22]. It was the aim of 
these works to determine accurately the total thermal effect developed in a calo- 
rimetric bomb. 

On the basis of the theory of thermal exchange and the theory of control, the 
fundamentals of the multi-body theory [23, 24] were determined. The method 
has been widely used for the investigation of dynamic properties of calorimetric 
systems and for the determination of the thermokinetics of the examined thermal 
effects. The assumptions of this theory are as follows [24]. 

Let us assume that the calorimetric system accommodates n bodies having the 
properties of linear first-order inertial objects. Therefore, each body has a uniform 
temperature throughout its total volume, which varies only with the time t, and 
its heat capacity is constant. Let temperature gradients occur only in the media 
separating the bodies, the heat capacities of these media being assumed to be 
negligible. Further, let us assume that the heat exchanged by the bodies through 
the media is proportional to the temperature difference between the bodies con- 
cerned, the corresponding coefficients of heat losses being the coefficients of pro- 
portionality. Furthermore, each body may comprise a source of thermal power 
and temperature can be measured in each body. A system of these bodies is con- 
tained within a medium of constant temperature. With these assumptions it 
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proved possible to develop a generalized equation for the heat balance on n 
bodies. This equation was derived by several methods; among others it can be 
derived from the Ki rchhof f -Four ie r  equation by a procedure similar to the one 
used to derive the heat balance on one body. This equation is 

KjdOj(t) + GojOj(t)dt + ~ au[Oj(t ) - O i ( t ) l d t  = dQj(t) (6) 
i = 1  
i4:j 

j =  1,2 . . . . .  n 

where n is the number of bodies; Kj is the heat capacity of the body j ;  G0i is the 
coefficient of heat losses between the b o d y j  and the surroundings; Gia is the coef- 
ficient of  heat losses between bodies i and j ;  Oj(t) is the function describing 
changes in the temFemtu,e of the b o d y j i n  time with respect to the surroundings; 
dQj(t) is the amount of heat evolved within the time dt in the body j ;  GojOj(t)dt 
is the amount of  heat exchanged between the body./" and the surroundings within 
a period of time dt; and G~j[Oj(t) - OM)]dt is the amount of  heat exchanged 
between bodies i a n d j  within the time dt. 

Next, Eq. (6) was normed in the dimension of  temperature and the result is 

r j - - - -  dOj(t) i dt + Oj(t) = k,j Oi(t ) + flj f j(t) .  (7) 
i = l  

j =  1,2 . . . . .  n 

In the derivation of the above equation the following quantities have been in- 
troduced. 

The overall coefficient of heat losses for any body, defined as 

Gj = ~ ,  G i j ;  . 
i=o 
i4:j 

./" = 1, 2 . . . . .  n (8) 

This coefficient accounts for the heat exchange occurring not only between the 
body j and the surroundings, but also between the body j and other bodies. 

The time constant Tj was defined as the ratio of the heat capacity Kj to the 
overall heat loss coefficient Gj 

r j  = & / G j ;  j = l ,  2 ,  . . . ,  , , .  (9) 

The time constant of the body./, that is Tj, is a measure of the thermal lag of the 
body j in the n-body system. 

The coefficient of  interaction was also introduced, defined as the ratio of  the 
heat loss coefficient to the overall heat loss coefficient 

k,j = a j/Gj. (lO) 
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This is a measure of  the thermal interaction between bodies i and j in respect to 
the interaction of the remaining bodies and the surroundings with the body j.  
The interaction coefficients affect essentially the thermal lag of  the calorimeter 
and allow us to establish the structure of the dynamic model of  a given calo- 
rimeter. 

Furthermore, the notion of the forcing functionfj(t)  - taken from the steering 
theory - was introduced into these considerations. The function fj(t) has the 
dimension of temperature and is proportional to the thermal power evolved. 

The equations for the heat balance in the system of  n bodies are quite general 
equations, and most frequently they are reduced to a model involving two or 
three bodies. Also, the assumptions adopted are general enough to include systems 
of any configuration. For  example (Fig. 1), it can be assumed that in a calorimeter 

Fig. 1. Sketch of the two-body model 

the vessel and its contents constitute one body; the internal shield containing 
the vessel or the thermocouples attached to the external surface of the vessel or 
another body; and the whole is placed in an external shield which is regarded as 
the medium (surroundings) of  a constant uniform temperature U 0. In this case 
the following parameters may be distinguished: the heat capacity K~. of the calo- 
rimetric vessel and its contents; and the temperature of  this body with reference 
to the external shield temperature, U0, expressed as 02(0  = U.,.(t) - U o. Similarly, 
for the internal shield, K1 is the heat capacity and O~(t) is the temperature with 
respect to the external shield temperature U 0. The heat exchange between the 
calorimeter and the isothermal shield is characterized by the heat loss coefficient 
Go1; whereas the heat exchange between the bodies distinguished is characterized 
by the coefficient G12. For  a two-body system of  configuration as presented in 
Fig. 1, the heat balance equations are as follows 

K~dO2(t ) + G~z[O2(t ) - O~(t)] d t =  d Q2(t) (11) 

K i d  01(0  + G12[Ol(t) - 02(01 dt + Go~ 01(  0 dt  = d Ql(t).  (12) 
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Conveniently, these heat balance equations can be normed in the dimension of 
temperature and then they become 

d O,,(t) 
d ~  + O~(t) = 01(0 + k f,.(t) (13) 

d Ol(t) 
T1 d~t - -  -~- O l ( t )  = ( l  - -  k )  O 2 ( t  ) -t- kf~(t) (14) 

In this form the equation are referred to as the equations of system dynamics. 
Time constants T1 and 7., and the coefficient k are expressed as follows 

and also 

L = x l / (ao l  + a . ) ;  r~, = K../al~,; k = 6'01/(a01 + 61,,) ( l S )  

f ( t )  = Wl(t)/Gol ; f.,(t) = W.,_(t)/kGr, o 

Investigation of the heat balance equations (11) and (12), and the dynamics 
equations (13) and (14) constituted a basis for the analysis of numerous calo- 
rimetric problems. It appears that different forms of dependencies combining the 
function W(t)wi th the  function O(t) are obtained according to relative locations 
of heat sources and temperature sensors in bodies l and 2. Thus - if the thermal 
effect is produced in body 1 and the temperature of body 1 is taken, the relation 
has the form 

{ f ' O l ( t )  d Ol(t) } . . . . . . . .  
M, M,, dt'-' + ( M 1  + M,,) d~ - + O l ( t )  G~ = W l ( t )  + T,, d W~(t) " dt 

(16) 

-- if the thermal effect is produced in body 2 and the temperature of body/  
is taken, the relation has the form 

{ d20l(t) d Ol(t) ] 
M1M.~ dt 2 + (M1 + Me) d~-- + 01(0 Go1 = W.2(t) (17) 

- if the thermal effect is produced in body 1 and the temperature of body 2 
is taken, the relation has the form 

{ d20~'(t) dO2(t) +O,,(t) } G o , = W ~ ( t )  (18) 
M~ M~2 dt 2 + (M1 + M2) d~t .... - 

- if the thermal effect is produced in body 2 and the temperature of body 2 
is taken, the relation has the form 

{ d2 O2(t) 602(0  } 
M1M., dt ~ + (M1 + Mz) d ~  + 02(0 G~ = 
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Wl(t) / 
= (1 + Gol/Ga2 ) W2(t ) + 7"1 ~ I (19) 

where 

(MI + M~)k = 7"1 + T~; MIMJC = T~T~. (20) 

Thus, as has been shown by dependencies (16) - (19) relative locations of heat 
sources and temperature sensors in a calorimetric system are of essential import- 
ance for the choice of an adequate form of the transmittance [25]. 

A simple transformation of Eq. (17) gives 

where 

d Ol(t ) 
K12(t) d ~  + G~ 01(0 = W2(t) (21) 

K12(t) = { M1 + M2 + M1M 2 d20l(t) d Ol(t ) } 
dt 2 : dt G~ (22) 

which indicates that the consideration of the equation in terms of the one-body 
model leads to the values of the heat capacity K12 of the calorimetric system as a 
variable with time [26]. Similarly, as a result of the works of Jessup [20], King and 
Grover [19], Oetting [27], West and Churney [21] and Churney, West and Arm- 
strong [22], it was pointed out, using the same model, that the equivalent energy 
of a calorimetric bomb depends upon the heat capacities of the distinguished bodies 
and the location of heat sources and temperature sensors. 

The discussed two-body model of a concentric configuration, as well as more 
complicated models, were used for the determination of the static-dynamic prop- 
erties of a number of calorimetric systems [1, 28, 29], and for the investigation 
of problems of thermostating calorimetric systems [30- 33]. Among other things, 
the importance attached to the differential coupling of calorimetric systems [1, 34, 
35] has been analyzed at full length. It was found out that if temperature fluctua- 
tions occur in the isothermal shield, even small differences in time constants for 
the calorimeters I and II can give rise to gross measurement errors if the tempera- 
ture is taken by the differential method. This leads to the conclusion that the only 
correct method for using the differential calorimeter is that in which the calo- 
rimeter together with the thermally passive substance is nothing more than a 
passive witness of the temperature change in the surroundings. 

The development of the multi-body theory, and creation of dynamic models of 
calorimeters by different means, will certainly contribute to the development of 
the theory of calorimeters. The theory, however, is not the aim in itself. Apart 
from the purity of the substance, the accuracy of choice of the object of thermo- 
chemical research and the application of measuring devices of high precision, it 
has become a topical question as to how to raise the accuracy of measurement 
through the choice of appropriate dependencies between the observed values in 
the course of calorimetric measurement and the thermal effect developed. 
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RI~SUMI~ -- Les propri6t6s dynamiques des calorim6tres appel6s non-isothermes/non-adiabati- 
ques sont examin6es dans cet article. Dans ces calorim6tres, l'effet thermique 6tudi6 est, en 
partie, accumul6e dans la cellule calorim6trique et, en partie, transmis ~t la gaine h tempgr- 
ature constante. On donne l'6quation g6n6rale du bilan thermique et l '6quation de la thermo- 
cinetique pour ce type de calorim6tre. L'6volution de l'effet thermique Q pendant le temps t 
est exprim6e en fonction des variations de temp6rature 6) du calorim~tre en temps t. Les relations 
Q(t) = f[@(t)] sont donn6es pour on calorim~tre avec diff6rentes configurations et diff6ren- 
tes alt6rations mutuelles des sources de chaleur et des d6tecteurs de temp6rature. On donne 
6galement une application pratique des considbrations pr6sent6es. 

ZUSAMMENFASSUNG - -  Die Eigenschaften der sog. nicht-isotherm-nicht-adiabatischen Kalori- 
meter werden analysiert. In diesen Kalodmetern wird der ausgel/Sste thermische Effekt teils im 
Kalorimetergef/il3 gespeichert und teils dem Konstanttemperaturschild tibertragen. Die 
verallgemeinerte Gleichung des W/irmegleichgewichts und die Gleichung der Dynamik werden 
ffir diesen Kalorimetertyp mitgeteilt. Die Abh~ingigkeit zwischen dem Verlaufe des thermischen 
Effektes Q in der Zeit t Dis Funktion der Temperatur/inderungen 69 des Kalorimeters werden 
ebenfalls mitgeteilt. Die Abhhngigkeiten Q ( t ) =  f[~9(t)] werden f/Jr ein Kalorimeter mit 
verschiedenen Bereichskonfigurationen, versc1~iedenen gegenseitigen St6rungen der W~ir- 
mequelle und des Temperatursensors angegeben. Es wird auch die praktische Anwendung der 
beschriebenen Anordnungen gezeigt. 

Pe3~Me - -  IlpoaHaJ~n3rtpoBari~i ~rtrIaM~iqecKne CBO~CTBa TaK Ha31,iaaeMbiX Rer~30TepMrI~tec - 
rJ~X-Hea~ma6aTnqecrnx raJ/opltMeTpOB. B TaKIIX xanopnMeTpax noJiyqeHrrbi~ TepMnqec~n~ 
adpd~eKT ~acTt4~no aKKyMy~apyexc~t B ranop~MexpnqecKoM cocy~e, qacxn,~no nepe~aeTcz 3xpa- 
Hy c HOCTOIIHHO~ TeMHepaTypo~. ]~JI~ 3TOFO T~ffta raJIopHMeTpOB ~IaHt,I o6o6n~eHHbie ypaaueHHe 
TelLrtOBOrO 6aaaHca H ypaBrtenrIe )~HHaMHK~L 3aBI~tClIMOCTb xo~a TepMH'tecKoFo 3qbt~erTa Q 3a 
BpeMfl t npe~cTaBaena gar qbynrttnn TeMnepaTyprn,ix rt3MeHermiR O xanopriMeTpa. IIp~tBe)IeH~,I 
3aBnc~iMOCXrI Q(t) = f[O(t)] zn~ raJIopnMeTpa c pa3nH~inmMn roHqbnrypauanMn cqbepbI n C- 
pa3~I, IqablM B3aHMHblM HapymenneM TenJ~OBblX ~ICTOX'IHHKOB H TeMr~epaTypHoro ceHcopa. IIpHBe- 
~eHo HparTI, IqecKoe HprlMeneHHe npejlcTaBJieiir~r~ix coo6pamenm~. 
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